5 Sekarang kita hitung terlebih dahulu Luas A1, A2, A3, dan A4 tersebut, berdasarkan data yang ada. Perhatikan Gambar 7 dibawah ini. Semua bidang A1, A2, A3, dan A4 (bagian yang diarsir) bentuknya adalah Polygon tertutup. Cara Matematis untuk Menghitung Luas Polygon Tertutup ada 2, yaitu: 1. Dengan Cara Koordinat, caranya dapat dilihat
Blog Koma – Puas kata sandang ini kita akan membahas materi Menentukan Titik berat Segitiga sama kaki. Sreg segitiga terdapat garis-garis singularis seperti garis api-api, garis tataran, garis untuk, dan garis berat, dimana rumus-rumus panjangnya bisa teman-padanan baca pada artikel “Panjang Garis-garis Istimewa puas Segitiga sama kaki” serta pembuktiannya pada artikel “Tinggi Garis Jarang pada Segitiga dan Pembuktiannya”. Garis berat segitiga terserah tiga yang ditarik dari masing-masing ketiga bintik tesmak segitiga. Perpotongan ketiga garis elusif tersebut pada sebuah noktah disebut aksen segitiga. Bagaimana cara Menentukan Titik Langka Segitiga sama tersebut? Untuk Menentukan Bintik Sukar Segitiga sama kaki, riuk satunya menggunakan penerapan materi vektor yaitu “proporsi vektor pada ruas garis”. Hal-hal nan harus kita kuasai untuk mempermudah mempelajari materi Menentukan Titik Berat Segitiga ini yakni “pengertian vektor”, “jenjang vektor”, “vektor posisi”, “kesamaan dua vektor, setimbang, dan segaris kelipatan”, “penjumlahan dan penyunatan vektor”, dan “perkalian vektor dengan skalar”. Peengertian garis berat dan aksen $ \spadesuit \, $ Pengertian garis terik segitiga Garis berat sebuah segitiga yaitu garis yang melangkaui sebuah titik sudut dan memberi sisi didepan sudut menjadi dua bagian sebabat panjang. Pada gambar di atas, yang termasuk garis berat adalah garis AE, garis BD, dan garis CF. $ \spadesuit \, $ Pengertian noktah langka segitiga sama Titik berat segitiga sama adalah tutul perpotongan antara ketiga garis berat segitiga. Lega gambar di atas, titik P yakni titik berat segitiga sama Abjad. Perbandingan ruas garis plong aksen segitiga sama kaki Perhatikan ilustrasi lembaga di atas, masing-masing garis musykil terhadap titik sulit titik P memiliki proporsi $ 2 1 $ yaitu $ AP PE = 2 1 $ , $ BP PD = 2 1 $, dan $ CP PF = 2 1 $. Rumus menentukan titik rumpil segitiga $ \clubsuit \, $ Vektor di R$^2$ Misalkan terdapat segitiga ABC dengan koordinat masing-masing noktah sudutnya $ Ax_1,y_1 $ , $ Bx_2,y_2 $ , dan $ Cx_3,y_3 $. Bintik rumit segitiga Leter dapat kita tentukan dengan rumus Tonjolan $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right $ $ \clubsuit \, $ Vektor di R$^3$ Misalkan terletak segitiga sama Fonem dengan koordinat masing-masing noktah sudutnya $ Ax_1,y_1,z_1 $ , $ Bx_2,y_2,z_2 $ , dan $ Cx_3,y_3,z_3 $. Tonjolan segitiga ABC boleh kita tentukan dengan rumus Aksen $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right $ Tulisan Untuk verifikasi teori di atas, silahkan tampin-teman lihat di bagian bawah setelah contoh-contoh soalnya. Teoretis cak bertanya Menentukan Titik Berat Segitiga 1. Tentukan koordinat aksen segitiga sama Fonem dengan koordinat masing-masing titik sudut $ A-1,2 $ , $ B3, -2 $ , dan $ C1,6 $ ! Penyelesaian *. Aksen $ \Delta$ABC yaitu $ \begin{align} \text{Titik berat } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \\ & = \left \frac{-1 + 3 + 1}{3} , \frac{2 + -2 + 6}{3} \right \\ & = \left \frac{3}{3} , \frac{6}{3} \right \\ & = \left 1 , 2 \right \end{align} $ Jadi, titik runyam segitiga Lambang bunyi adalah $ 1,2 . \, \heartsuit $. 2. Diketahui $ \Muara sungai$PQR dengan koordinat bintik sudut $ P1, -2,3 $ , $ Q5, 1, -1 $ , dan $ R-3, -5, 4 $. Tentukan koordinat tonjolan segitiga sama PQR tersebut! Perampungan $ \begin{align} \text{Tonjolan } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right \\ & = \left \frac{1 + 5 + -3}{3} , \frac{-2 + 1 + -5}{3} , \frac{3 + -1 + 4}{3} \right \\ & = \left \frac{3}{3} , \frac{-6}{3} , \frac{6}{3} \right \\ & = \left 1 , -2 , 2 \right \end{align} $ Makara, tutul berat segitiga sama kaki PQR adalah $ 1 , -2 , 2 . \, \heartsuit $. 3. Segitiga KLM memiliki bintik ki perspektif $ Kp,1,2 $, $ L1, q, -1 $ , dan $ M3, 0 , r $. Kalau titik berat segitiga KLM yaitu $ 1,1,-1 $ , maka tentukan koordinat tutul sudut K, L, dan M serta tentukan nilai $ p + 2q + r^{2017} $! Penyelesaian *. Menentukan nilai $ p , q, r $ mulai sejak titik beratnya $ \begin{align} \text{Titik berat } & = 1,1,-1 \\ \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right & = 1,1,-1 \\ \left \frac{p+1+3}{3} , \frac{1+q+0}{3} , \frac{2+ -1 + r}{3} \right & = 1,1,-1 \\ \left \frac{p+4}{3} , \frac{1+q}{3} , \frac{1 + r}{3} \right & = 1,1,-1 \end{align} $ *. Berpokok ekualitas dua buah vektor, kita peroleh $ \frac{p+4}{3} = 1 \rightarrow p + 4 = 3 \rightarrow p = -1 $ $ \frac{1+q}{3} = 1 \rightarrow 1 + q = 3 \rightarrow q = 2 $ $ \frac{1 + r}{3} = -1 \rightarrow 1 + r = -3 \rightarrow r = -4 $ Sehingga koordinat masing-masing bintik sudut segitiga KLM yakni $ Kp,1,2 = -1,1,2 $ , $ L1, q, -1 = 1, 2, -1 $, dan $ M3, 0 , r = 3, 0 , -4 $. *. Menentukan nilai $ p + 2q + r^{2017} $ $ p + 2q + r^{2017} = -1 + + -4^{2017} = -1^{2017} = -1 $. Jadi, nilai $ p + 2q + r^{2017} = -1 . \, \heartsuit $ 4. Diketahui persegipanajng ABCD dengan $ A0,0 $ , $ B3,0 $ , $ C3,6 $ , dan $ D0,6 $. Sekiranya titik P ialah aksen segitiga sama ABC dan bintik Q merupakan bintik berat segitiga ACD, maka tentukan a. Panjang PQ, b. Apakah titik P dan Q terdapat pada satah diagonal BD? Perampungan *. Ilustrasi susuk. a. Pangkat PQ, -. Menentukan titik elusif segitiga Leter $ \begin{align} \text{Bintik berat } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \\ & = \left \frac{0 + 3 + 3}{3} , \frac{0 + 0 + 6}{3} \right \\ & = \left \frac{6}{3} , \frac{6}{3} \right \\ & = \left 2 , 2 \right \end{align} $ sehingga noktah P2,2 -. Menentukan titik berat segitiga ACD $ \begin{align} \text{Titik musykil } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \\ & = \left \frac{0 + 3 + 0}{3} , \frac{0 + 6 + 6}{3} \right \\ & = \left \frac{3}{3} , \frac{12}{3} \right \\ & = \left 1 , 4 \right \end{align} $ sehingga bintik Q1,4 -. Menentukan pangkat PQ dimana P2,2 dan Q1,4 $ PQ = \sqrt{1-2^2 + 4-2^2} = \sqrt{1 + 4} = \sqrt{5} $. Jadi, hierarki PQ adalah $ \sqrt{5} \, $ rincih panjang. b. Apakah titik P dan Q terdapat pada bidang diagonal BD? *. Untuk mengetahui terletak atau tidaknya titik pada sebuah garis, cuku kita cek apakah titik-titik tersebut segaris kolinear atau tidak. Titik K, L , dan M segaris jika $ \vec{KL} = k \vec{LM} $ salah suatu vektor yakni kelipatan dari vektor yang lainnya. -. Apakah titik $ B3,0 $ , $ P2,2 $ dan $ D0,6 $ segaris? mari kita cek $ \begin{align} \vec{BP} & = k \vec{PD} \\ \vec{p} – \vec{b} & = k \vec{d} – \vec{p} \\ 2,2 – 3,0 & = k 0,6 – 2,2 \\ -1, 2 & = k -2 , 4 \\ -1, 2 & = -2k , 4k \end{align} $ Kita terima $ -2k = -1 \rightarrow k = \frac{1}{2} $ $ 4k = 2 \rightarrow k = \frac{1}{2} $ Karena terdapat kredit $ k $ yang sebabat maka dolan $ \vec{BP} = k \vec{PD} \rightarrow \vec{BP} = \frac{1}{2} \vec{PD} $ , sehingga titik P segaris dengan titik B dan D, artinya aksen P terdapat lega latar diagonal BD. -. Apakah titik $ B3,0 $ , $ Q1,4 $ dan $ D0,6 $ segaris? mari kita cek $ \begin{align} \vec{BQ} & = n \vec{QD} \\ \vec{q} – \vec{b} & = n \vec{d} – \vec{q} \\ 1,4 – 3,0 & = falak 0,6 – 1,4 \\ -2, 4 & = t -1 , 2 \\ -2, 4 & = -n , 2n \end{align} $ Kita peroleh $ -lengkung langit = -2 \rightarrow ufuk = 2 $ $ 2n = 4 \rightarrow n = 2 $ Karena terwalak nilai $ n $ yang sama maka berlaku $ \vec{BQ} = cakrawala \vec{QD} \rightarrow \vec{BQ} = 2 \vec{QD} $ , sehingga titik Q segaris dengan titik B dan D, artinya bintik sulit Q terwalak pada bidang diagonal BD. Jadi, kesimpulannya bintik elusif P dan Q terletak puas rataan diagonal BD. $ \spadesuit \, $ Pembuktian Perbandingan ruas garis pada titik berat segitiga *. Perhatikan ilustrasi gambar berikut. *. Cak bagi menentukan nisbah garis nan diminta, kita akan kerjakan dengan menggunakan konsep skala vektor. *. Dengan konsep titik-bintik segaris kolinear , kita terima Misalkan $ \vec{AB} = \vec{q} $ dan $ \vec{AC} = \vec{p} $. $ \vec{AF} = \frac{1}{2}\vec{AB} = \frac{1}{3}\vec{q} $ dan $ \vec{AD} = \frac{1}{2}\vec{AC} = \frac{1}{2}\vec{p} $. -. Vektor $\vec{FP} $ segaris dengan $ \vec{FC} $ sehingga main-main kelipatan $ \vec{FP} = n\vec{FC} \rightarrow \frac{\vec{FP}}{\vec{FC}} = \frac{n}{1} $ sehingga $ \frac{\vec{FP}}{\vec{PC}} = \frac{cakrawala}{1-n} $ -. Vektor $\vec{DP} $ segaris dengan $ \vec{DB} $ sehingga berlaku kelipatan $ \vec{DP} = m\vec{DB} \rightarrow \frac{\vec{DP}}{\vec{DB}} = \frac{m}{1} $ sehingga $ \frac{\vec{DP}}{\vec{PB}} = \frac{m}{1-m} $ -. Vektor $\vec{AP} $ segaris dengan $ \vec{AE} $ sehingga berperan kelipatan $ \vec{AP} = x\vec{AE} \rightarrow \frac{\vec{AP}}{\vec{AE}} = \frac{x}{1} $ sehingga $ \frac{\vec{AP}}{\vec{PE}} = \frac{x}{1-x} $ *. Menentukan vektor $ \vec{AP} $ dari $ \vec{FP}\vec{PC} = n 1-n $ $ \vec{AP} = \frac{n\vec{AC} + 1-kaki langit\vec{AF}}{n + 1-n} = \frac{falak\vec{p} + 1-n.\frac{1}{2}\vec{q}}{1} = falak\vec{p} + \frac{1-n}{2}\vec{q} $. *. Menentukan vektor $ \vec{AP} $ berbunga $ \vec{DP}\vec{PB} = m 1-m $ $ \vec{AP} = \frac{m\vec{AB} + 1-m\vec{AD}}{m + 1-m} = \frac{m\vec{q} + 1-m.\frac{1}{2}\vec{p}}{1} = m\vec{q} + \frac{1-m}{2}\vec{p} $. *. Menentukan vektor $ \vec{AP} $ berusul $ \vec{BE}\vec{EC} = 1 1 $ $ \vec{AP} = x \vec{AE} = x \frac{\vec{AB} + \vec{AC}}{1 + 1} = x\frac{\vec{q} + \vec{p}}{2} = \frac{x}{2}\vec{q} + \frac{x}{2}\vec{p} $. *. Ketiga buram vektor $ \vec{AP} $ di atas setinggi yakni $ \vec{AP} = n\vec{p} + \frac{1-n}{2}\vec{q} \, $ …. i $ \vec{AP} = m\vec{q} + \frac{1-m}{2}\vec{p} \, $ …. ii $ \vec{AP} = \frac{x}{2}\vec{q} + \frac{x}{2}\vec{p} \, $ …. iii *. Menentukan angka $ lengkung langit , m , x $ dengan menyeimbangkan koefisien vektor sejenis -. Bentuk i dan iii Koefisien $ \vec{p} \rightarrow lengkung langit = \frac{x}{2} $ Koefisien $ \vec{q} \rightarrow \frac{1-tepi langit}{2} = \frac{x}{2} $ Artinya $ n = \frac{1-n}{2} \rightarrow 2n = 1- n \rightarrow 3n = 1 \rightarrow n = \frac{1}{3} $. Nilai $ \frac{x}{2} = n \rightarrow \frac{x}{2} = \frac{1}{3} \rightarrow x = \frac{2}{3} $. -. Persii dan iii dan gunakan $ x = \frac{2}{3} $ Koefisien $ \vec{q} \rightarrow m = \frac{x}{2} \rightarrow m = \frac{\frac{2}{3} }{2} = \frac{1}{3} $ Sehingga kita cak dapat nilai $ n = \frac{1}{3}, m = \frac{1}{3} $ , dan $ x = \frac{2}{3} $ *. Menentukan perbandingan yang diminta $ \vec{AP}\vec{PE} = x 1-x = \frac{2}{3} 1 – \frac{2}{3} = \frac{2}{3} \frac{1}{3} = 2 1 $ $ \vec{BP}\vec{PD} = 1 – m m = 1 – \frac{1}{3} \frac{1}{3} = \frac{2}{3} \frac{1}{3} = 2 1 $ $ \vec{CP}\vec{PF} = 1 – tepi langit falak = 1 – \frac{1}{3} \frac{1}{3} = \frac{2}{3} \frac{1}{3} = 2 1 $ Jadi, kita peroleh perbandingan $ AP PE = 2 1 $ , $ BP PD = 2 1 $, dan $ CP PF = 2 1 $. $ \clubsuit \, $ Pembuktian Rumus menentukan aksen segitiga Misalkan titik A, B, C, P, dan E punya vektor posisi masing-masing $ \vec{a} $, $ \vec{b} $ , $ \vec{c} $ , $ \vec{p} $ , dan $ \vec{e} $ . Paerhatikan lembaga berikut -. Perhatikan perbandingan $ \vec{BE}\vec{EC} = 1 1 $ , sehingga $ \vec{e} = \frac{\vec{b} + \vec{c}}{2} $. -. $\vec{AP} $ dan $ \vec{AE} $ segaris, sehingga $ \begin{align} \vec{AP} & = \frac{2}{3}\vec{AE} \\ \vec{p} – \vec{a} & = \frac{2}{3} \vec{e} – \vec{a} \\ \vec{p} & = \frac{2}{3} \vec{e} – \frac{2}{3}\vec{a} + \vec{a} \\ & = \frac{2}{3} . \frac{\vec{b} + \vec{c}}{2} + \frac{1}{3}\vec{a} \\ & = \frac{1}{3} \vec{b} + \vec{c} + \frac{1}{3}\vec{a} \\ & = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} \end{align} $ Sehingga vektor posisi titik beratnya $ \vec{p} = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} $. -. Vektor di R$^2$ Misalkan terdapat segitiga ABC dengan koordinat sendirisendiri titik sudutnya $ Ax_1,y_1 $ , $ Bx_2,y_2 $ , dan $ Cx_3,y_3 $. RUmus titik berat segitiganya $ \begin{align} \vec{p} & = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} \\ & = \frac{1}{3} x_1,y_1 + x_2,y_2 + x_3,y_3 \\ & = \frac{1}{3} x_1+ x_2 + x_3,y_1+y_2+y_3 \\ & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \end{align} $ Jadi, terbukti bahwa rumus tonjolan yaitu Titik berat $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right $ -. Vektor di R$^3$ Misalkan terdapat segitiga Huruf dengan koordinat tiap-tiap tutul sudutnya $ Ax_1,y_1,z_1 $ , $ Bx_2,y_2,z_2 $ , dan $ Cx_3,y_3,z_3 $. RUmus aksen segitiganya $ \begin{align} \vec{p} & = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} \\ & = \frac{1}{3} x_1,y_1,z_1 + x_2,y_2,z_2 + x_3,y_3,z_3 \\ & = \frac{1}{3} x_1+ x_2 + x_3,y_1+y_2+y_3, z_1 + z_2 + z_3 \\ & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right \end{align} $ Jadi, terbukti bahwa rumus noktah elusif adalah Tonjolan $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right $ Demikian pembahasan materi Menentukan Tonjolan Segitiga dan komplet-contohnya. Silahkan juga baca materi lain yang berkaitan dengan tuntutan vektor yaitu “pembuktian dalil Menelaus dan Ceva dengan Vektor”. m1= 1 kg pada koordinat (3,6) m2 = 2 kg pada koordinat (0,6) m3 = 3 kg pada koordinat (3,0) Ditanya : (x0, y0) Penyelesaian : Titik berat benda merupakan titik dimana berat keseluruhan benda terpusat pada titik tersebut. Pada benda yang diketahui massanya, koordinat titik berat (x,y) dapat dihitung menggunakan persamaan berikut. Postingan ini membahas contoh soal letak titik berat bidang homogen seperti bidang gabungan persegi panjang, persegi dan segitiga yang disertai pembahasannya atau penyelesaiannya. Setiap benda terdiri atas titik-titik materi atau partikel yang masing-masing memiliki berat. Resultan dari seluruh berat partikel disebut gaya berat benda. Sedangkan titik tangkap gaya berat disebut dengan titik berat benda-benda homogen yang memiliki bentuk teratur, sehingga memiliki garis atau bidang simetris, maka titik berat benda terletak pada garis atau bidang simetris tersebut. Rumus titik berat untuk bidang homogen berbentuk bidang dua dimensi sebagai berikut.→ x = x1 . A1 + x2 . A2 + …+ xn . AnA1 + A2 + …+ An → y = y1 . A1 + y2 . A2 + … + yn . AnA1 + A2 + …An Rumus titik berat untuk bidang homogen berbentuk ruang bidang tiga dimensi sebagai berikut.→ x = x1 . V1 + x2 . V2 + …+ xn . VnV1 + V2 + …+ Vn → y = y1 . V1 + y2 . V2 + … + yn . VnV1 + V2 + …Vn Rumus titik berat untuk bidang satu dimensi sebagai berikut.→ x = x1 . L1 + x2 . L2 + …+ xn . LnL1 + L2 + …+ Ln → y = y1 . L1 + y2 . L2 + … + yn . LnL1 + L2 + …Ln Keteranganx = letak titik berat dari sumbu xy = letak tiitk berat dari sumbu yx1, x2, xn = letak titik berat dari sumbu x bidang ke-1, ke-2, ke-ny1, y2, yn = letak titik berat dari sumbu y bidang ke-1, ke-2, ke-nA = luas bidangV = Volume bidangL = panjang bidangLangkah-langkah menentukan titik berat bidang homogen gabungan sebagai berikutBagi bidang gabungan menjadi beberapa titik berat masing-masing luas/volume/panjang masing-masing rumus titik berat bidang gabungan disumbu X dan Y dengan rumus soal 1Letak titik berat dari bangun bidang pada gambar dibawah dari sumbu X adalah…Contoh soal letak titik berat bidang gabungan persegi panjang dan segitigaB. 4 cmC. 3,3 cmD. 3 cmE. 2 cmPembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang dan segitiga seperti gambar dibawah berat bidang gabungan persegi panjang dan segitigaLuas persegi panjang A1 = 6 . 3 = 18 titik berat x1 = 3 ; y1 = 1,5 dan dan luas segitiga A2 = 1/2 . 3 . 3 = 4,5 titik berat x2 = 4,5 ; y2 = 4. Kemudian tentukan titik berat dari sumbu x dengan rumus dibawah ini.→ x = x1 . A1 + x2 . A2A1 + A2 → x = 3 . 18 + 4,5 . 4,518 + 4,5 → x = 54 + 20,2518 + 4,5 → x = 74,2522,5 = 3, soal ini jawabannya soal 2Suatu sistem bidang homogen ditunjukkan seperti soal letak titik berat bidang huruf TKoordinat titik berat sistem benda adalah…A. 4 ; 3 mB. 4 ; 4,6 mD. 4 ; 5 mE. 4 ; 5,4 mPembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang bawah dan persegi panjang atas seperti gambar dibawah berat bidang huruf TLuas persegi panjang bawah A1 = 4 . 6 = 24 titik berat x1 = 4 , y1 = 3 dan luas persegi panjang atas A2 = 8 . 2 = 16 titik berat x2 = 4 , y2 = 7. Selanjutnya menentukan titik berat dari sumbu x dengan rumus dibawah ini.→ x = x1 . A1 + x2 . A2A1 + A2 → x = 4 . 24 + 4 . 1624 + 16 → x = 96 + 6440 → x = 16040 = menentukan titik berat dari sumbu Y dengan cara dibawah ini.→ y = y1 . A1 + y2 . A2A1 + A2 → y = 3 . 24 + 7 . 1624 + 16 → y = 72 + 11240 → y = 18440 = 4, titik berat 4 ; 4,6. Soal ini jawabannya soal 3Perhatikan gambar bidang homogen dibawah gabungan persegi panjang & segitigaKoordinat titik berat benda bidang simetris terhadap titik O adalah….A. 2 ; 4B. 2 ; 3,6C. 2 ; 3,2D. 2 ; 3E. 2 ; 2,8Pembahasan / penyelesaian soalKita bagi menjadi 2 bidang seperti gambar dibawah berat bidang gabungan persegipanjang & segitigaLuas persegi panjang A1 = 4 . 6 = 24 titik berat x1 = 2 ; y1 = 3 dan dan luas segitiga A2 = 1/2 . 2 . 6 = 6 titik berat x2 = 2 ; y2 = 8. Selanjutnya kita hitung letak titik berat dari sumbu X yaitu→ x = x1 . A1 + x2 . A2A1 + A2 → x = 2 . 24 + 2 . 624 + 6 → x = 48 + 1230 → x = 6030 = kita hitung titik berat disumbu Y→ y = y1 . A1 + y2 . A2A1 + A2 → y = 3 . 24 + 8 . 624 + 6 → y = 72 + 4830 → y = 12030 = titik berat bidang gabungan nomor 4 adalah 2 , 4 atau jawabannya soal 4Letak titik berat bidang homogen dibawah ini terhadap titik O adalah …Bidang homogen huruf LA. 2 ; 2B. 2 ; 3C. 2 ; 4D. 3 ; 2E. 3 ; 3Pembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang vertikal dan persegi panjang titik berat bidang huruf LKita tentukan letak titik berat dari sumbu X dengan cara dibawah ini.→ x = x1 . A1 + x2 . A2A1 + A2 → x = 0,5 . 1 . 10 + 3,5 . 5 . 21 . 10 + 5 . 2 → x = 5 + 3510 + 10 → x = 4020 = tentukan letak titik berat dari sumbu y sebagai berikut→ y = y1 . A1 + y2 . A2A1 + A2 → y = 5 . 1 . 10 + 1 . 5 . 21 . 10 + 5 . 2 → y = 50 + 1010 + 10 → y = 6020 = letak titik berat bidang huruf L diatas adalah 2 ; 3 atau jawaban soal 5Sebuah bidang homogen seperti pada soal letak titik berat nomor 6Letak titik ordinat bidang yang diarsir terhadap sisi B adalah..Pembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang besar dan lubang segitiga. Luas persegi panjang besar A1 = 4 . 8 = 32 titik berat x1 = 2 ; y1 = 4 dan luas segitiga A1 = 1/2 . 4 . 3 = 6 titik berat x1 = 2 ; y1 = 6. Letak titik berat dari sumbu Y sebagai berikut.→ y = y1 . A1 – y2 . A2A1 – A2 → y = 4 . 32 – 7 . 632 – 6 → y = 128 – 4226 → y = 8626 = 4313 = 3 413 Soal ini jawabannya soal 6Letak titik berat sistem benda seperti gambar dibawah ini adalah…Contoh soal letak titik berat nomor 6A. ; 2B. 1 ; 1 3/5C. 2/5 ; 1 4/5D. 1 ; 1 4/5E. 2 ; 2Pembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi besar dan lubang berbentuk persegi panjang kecil seperti gambar dibawah titik berat persegi panjangLuas persegi besar A1 = 4 . 4 = 16 titik berat x1 = 2 ; y1 = 2 dan luas lubang persegi panjang kecil A2 = 2 . 2 = 4 titik berat x2 = 1 ; y2 = 2. Selanjutnya menentukan titik berat dari sumbu x dengan cara dibawah ini.→ x = x1 . A1 – x2 . A2A1 – A2 → x = 2 . 4 . 4 – 1 . 2 . 24 . 4 – 2 . 2 → x = 32 – 416 – 4 → x = 2812 = 73 = 2 13 .Kemudian menentukan titik berat dari sumbu y dengan rumus dibawah ini.→ y = y1 . A1 – y2 . A2A1 – A2 → y = 2 . 4 . 4 – 2 . 2 . 24 . 4 – 2 . 2 → y = 32 – 816 – 4 → y = 2412 = letak titik berat persegi panjang nomor 1 adalah 2 ; 2 atau jawaban soal 7Letak koordinat titik berat benda homogen terhadap titik O pada gambar berikut adalah …Contoh soal letak titik berat nomor 7A. 4 ; 3B. 4 ; 3C. 4 ; 3D. 3 ; 4E. 3 ; 3Pembahasan / penyelesaian soalPembahasan soal letak titik berat nomor 7Letak titik berat koordinat x sebagai berikut.→ x = x1 . A1 – x2 . A2A1 – A2 → x = 3 . 48 – 3 . 1248 – 12 → x = 144 – 3636 = 3Letak titik berat koordinat y sebagai berikut.→ y = y1 . A1 – y2 . A2A1 – A2 → y = 4 . 48 – 5 . 1248 – 12 → y = 192 – 6036 = 13236 = 113 = 323 Soal ini jawabannya soal 8Titik berat dari bangun bidang dibawah ini adalah …Contoh soal titik berat nomor 8A. 3/2 ; 4/5 cmB. 3/2 ; 2 cmC. 5/2 ; 5/4 cmD. 2 ; 4/5 cmE. 2 ; 7/4 cmPembahasan soal / penyelesaian soalPembahasan soal letak titik berat nomor 8Letak titik berat koordinat x sebagai berikut.→ x = x1 . A1 – x2 . A2A1 – A2 → x = 2 . 12 – 2 . 412 – 4 = 2Letak titik berat koordinat y sebagai berikut.→ y = y1 . A1 – y2 . A2A1 – A2 → y = 1,5 . 12 – 1 . 412 – 4 = 74 Jawaban soal 9Koordinat titik berat bangun bidang dibawah ini adalah …Contoh soal titik berat nomor 9A. 1 ; 1B. 2 ; 1/2C. 2 ; 1D. 2 ; 1E. 2 ; 2Pembahasan / penyelesaian soalPembahasan soal letak titik berat nomor 9Titik berat koordinat x sebagai berikut.→ x = x1 . A1 – x2 . A2 – x3 . A3A1 – A2 – A3 → x = 2 . 12 – 2 . 2 – 2 . 212 – 2 – 2 = 2Letak titik berat koordinat y sebagai berikut.→ y = y1 . A1 – y2 . A2 – y3 . A3A1 – A2 – A3 → y = 1,5 . 12 – 0,5 . 2 – 2,5 . 212 – 2 – 2 = 112 Jawaban C. Untukmengetahui bagaimana dan seberapa detailnya cara menghitung titik koordinat dalam sebuah area, tentu banyak macam cara yang bisa kita lakukan. Banyak software-software GIS yang terkenal seperti Google Maps, Foursquare, Google Earth dan lain-lain. Carayang dapat dilakukan untuk ekstrapolasi adalah dengan memperpanjang ruas garis terujung ke arah kanan. Misalkan, dari gambar grafik soal 2. dapat diperkirakan berat badan bayi pada usia 10 bulan. Jika garis lurus sudah ditentukan, Anda dapat menentukan interpolasi data. Untuk ekstrapolasi data, Anda harus berhati-hati.